Секреты сетчатки и её значение в структуре глаза человека


Как устроены и работают наши глаза?

Зрительные органы человека имеют сложное строение. Именно благодаря способности видеть мы воспринимаем до 90% информации об окружающем мире. Человек может различать миллионы оттенков, а также наделен бинокулярным зрением и способен определить величину предмета, расстояние до него, соотнести по размеру окружающие объекты. Кроме того, наш глаз умеет менять фокус для зрения на дальние и ближние расстояния — это называется аккомодацией, регулировать объем поступающего в него света, корректировать хроматические и сферические аберрации и т.д. Как же происходит процесс восприятия изображения? Световой луч, отраженный от окружающих предметов, проходит через прозрачную выпуклую полусферу переднего отдела глаза — роговицу. Затем он попадает в зрачок — отверстие, расположенное в центре радужной оболочки. Именно благодаря способности зрачка сужаться или расширяться человеческий глаз может приспосабливаться к освещению различной интенсивности.

Далее луч проходит через хрусталик, функция которого — преломление и фокусировка изображения на сетчатке. Он также играет важнейшую роль в аккомодации — изменяет свою кривизну для обеспечения остроты зрения на дальних и ближних расстояниях. Благодаря такому уникальному органу человек при нормальном зрении может без особого труда разглядеть и звезды на ночном небе, и мелкий шрифт в книге. А затем световой луч, преломляясь о хрусталик и фокусируясь, достигает сетчатой оболочки. Это сложнейшая глазная структура, патологии которой приводят к необратимой потере зрения. В сетчатке содержится примерно 137 миллионов различных фоторецепторов, способных обрабатывать до 10 миллиардов фотонов. Именно на сетчатой оболочке формируется изображение, но оно меньше истинного размера и к тому же перевернуто вверх ногами. Благодаря работе фоторецепторов световые лучи трансформируются в электрические импульсы, преодолевают нервные волокна и через зрительный нерв передаются в определенные отделы головного мозга. При этом каждый глаз воспринимает видимое изображение по отдельности, но мозг объединяет их в единое целое, формируя привычную картинку.

Особенности восприятия лучей света человеком и животными

Свет – электромагнитное излучение, высокочастотные волны, из которых человек воспринимает только определенный диапазон частот. Первичные источники света, такие как солнце, огонь, мы видим. Вторичные прозрачные источники, которые отражают свет (например, воздух или стекло), остаются для человека невидимыми.

Диапазон от 400 до 790 терагерц – охват, который глаза человека способны различить. Люди не видят ультрафиолетовое и инфракрасное излучение. В свою очередь животные, а также рыбы, способны «лицезреть» УФ, диапазон которого находится в районе 400 нм. Такая особенность позволяет им выживать в самых сложных условиях, охотиться, защищаться от хищников.

В отличие от ультрафиолета инфракрасные лучи большинство животных не видят. Исключение составляют те представители фауны, которых природа «наградила» специальными рецепторами, находящимися на разных участках туловища. Человек же распознать инфракрасные лучи может только, используя специальное оборудование – тепловизоры.

Почему изображение попадает на сетчатку в перевернутом виде?

Рассмотрим данное явление подробнее. Почему же зримое нами нормальное изображение попадает на сетчатку вверх ногами? Из курса физики известно, что световые лучи в процессе прохождения через криволинейную поверхность преломляются, при этом изображение с обратной стороны становится перевернутым. Зрительные органы содержат две естественные преломляющие линзы — роговицу и хрусталик, через которые проходят световые лучи, прежде чем попасть на сетчатку. А вот преломляются они при этом целых три раза.

Первое преломление происходит, когда свет пересекает роговицу — видимая картинка переворачивается. Затем луч достигает хрусталика, представляющего собой двояковыпуклую линзу. При прохождении через его первую поверхность изображение опять переворачивается в привычный вид, а при следующем преломлении о заднюю выпуклую часть естественной линзы снова инвертируется и в таком перевернутом виде поступает на сетчатую оболочку.

После тройного переворачивания происходит сложнейший процесс преобразования клетками сетчатки полученной информации в электрические импульсы, которые по зрительному нерву передаются в специальные отделы-анализаторы головного мозга. Они формируют привычное нам изображение: небо находится вверху, а земля внизу. Происходит этот процесс мгновенно. Проведенный нейробиологами из Массачусетского университета эксперимент показал, что человеческий мозг способен обработать изображение минимум за 13 миллисекунд. Участникам нужно было подать сигнал, когда среди меняющихся со скоростью 13-80 миллисекунд картинок они видели определенные сюжеты, например, автомобиль или натюрморт. Ученые считают, что такая способность к оперативной обработке информации помогает выбирать нам объекты для рассмотрения. Глазные яблоки способны перемещать свое положение со скоростью до 3 движений в секунду, за это время мозг должен идентифицировать всю информацию в поле зрения, осознать увиденное и принять решение, куда смотреть дальше.

Теория модулей

Рисунок 11. Стереограммы со случайными точками Белы Жулеса, парящий квадрат
Второй стартовой точкой в исследованиях Марра (после работы знакомства с работами Уоррингтон) является предположение, что наша зрительная система имеет модульную структуру. Выражаясь компьютерным языком, наша главная программа «Зрение» охватывает широкий круг подпрограмм, каждая из которых полностью независима от других, и может работать независимо от других подпрограмм. Ярким примером такой подпрограммы (или модуля) является стереоскопическое зрение, при помощи которого глубина воспринимается как результат обработки изображений, поступающих с обоих глаз, которые представляют собой немного отличающиеся друг от друга изображения. Прежде считалось, что чтобы видеть в трех измерениях, мы сначала распознаем изображения целиком, а потом решаем какие объекты находятся ближе, а какие дальше. В 1960 году Бела Жулес (Bela Julesz), который был удостоен премией Heineken в 1985 году, смог продемонстрировать, что пространственное восприятие двумя глазами происходит исключительно сравнением небольших различий между двумя изображениями, полученными с сетчаток обоих глаз. Таким образом, можно почувствовать глубину даже там, где нет и не предполагается никаких объектов. Для своих экспериментов Жулес придумал стереограммы, состоящие из случайно расположенных точек (см. рис. 11). Изображение, видимое правым глазом, идентично изображению видимому левым глазом во всем, кроме квадратной центральной области, которая обрезана и немного смещена к одному краю и снова совмещена с задним планом. Оставшийся белый промежуток затем был заполнен случайными точками. Если на два изображения (на которых не распознается никакого объекта) посмотреть сквозь стереоскоп, квадрат, который ранее был вырезан, будет выглядеть парящим над задним планом. Такие стереограммы содержат пространственные данные, которые автоматически обрабатываются нашей зрительной системой. Таким образом, стереоскопия является автономным модулем зрительной системы. Теория модулей показала себя достаточно эффективной.

Как на самом деле видит предметы новорожденный?

Распространено мнение, что младенцы видят окружающий мир перевернутым. Это верно лишь отчасти. На самом деле в первые 30-50 дней зрение ребенка очень несовершенно. Его глазное яблоко имеет слегка приплюснутую форму, сетчатка продолжает формироваться, а желтое пятно (макула), отвечающее за остроту центрального зрения, еще отсутствует. Малыш способен различать только светлые и темные пятна. Например, если в темной комнате зажечь лампу, то новорожденный сможет распознать лишь световой ореол, но не более. Все остальное представляется для него в размытом виде.

Способность мозга к исправлению картинки, передаваемой глазом, требует опыта. Но поскольку малыш еще не способен фокусировать взгляд и четко видеть предметы, то и переворачивать ему, по сути, нечего. К двум месяцам жизни световая чувствительность сетчатки возрастает почти в пять раз, укрепляются глазодвигательные мышцы, объекты обретают свои контуры, хотя видны пока только в двух измерениях — в длину и ширину. Ребенок уже проявляет к ним интерес, тянется ручкой, соответственно, учится различать верх и низ.

Лекция Элизабет Уоррингтон (Elizabeth Warrington)

В 1973 году Марр посетил лекцию британского невролога Элизабет Уоррингтон. Она отметила, что большое количество пациентов с париетальными повреждениями правой части мозга, которых она осмотрела, могли отлично распознавать и описывать множество объектов при условии, что эти объекты наблюдались ими в их обычном виде. Например, такие пациенты без особого труда идентифицировали ведро при виде сбоку, но не были способны распознать то же самое ведро при виде сверху. На самом деле, даже когда им говорили, что они смотрят на ведро сверху, они наотрез отказывались в это поверить! Еще более удивительным было поведение пациентов с повреждениями левой части мозга. Такие пациенты, как правило, не могут разговаривать, и, следовательно, вербально не могут назвать предмет, на который они смотрят, или описать его назначение. Тем не менее, они могут показать, что они правильно воспринимают геометрию предмета независимо от угла обзора. Это побудило Марра написать следующее: «Лекция Уоррингтон подтолкнула меня к следующим выводам. Во-первых, представление о форме объекта хранится в каком-то другом месте мозга, поэтому так сильно отличаются представления о форме предмета и его назначении. Во-вторых, зрение само может предоставить внутреннее описание формы наблюдаемого объекта, даже если этот объект не распознается обычным образом… Элизабет Уоррингтон указала на наиболее существенный факт человеческого зрения – оно говорит о форме, пространстве и взаимном расположении объектов.» Если это действительно так, то ученые, работающие в области зрительного восприятия и искусственного интеллекта (в том числе и те, кто работают в области машинного зрения) должны будут поменять теорию детекторов из экспериментов Хьюбела на совершенно новый набор тактик.

Может ли человек научиться видеть мир вверх ногами?

Этот вопрос интересует многих людей. Первый подобный опыт на данную тему был проведен американским психологом Д.М. Стрэттоном. В 1896 году он создал инвертоскоп — оптический прибор, который выпрямляет перевернутое на сетчатке глаза изображение. Использование инвертоскопа позволяет видеть окружающий мир вверх ногами. Первые опыты показали, что человек приспосабливается к такому восприятию через несколько суток. Примерно после трех дней дезориентация уменьшилась, а на восьмой день эксперимента образовались новые зрительно-моторные координации. После того как инвертоскоп сняли с глаз, непривычным казался уже нормальный мир, и вновь требовалось некоторое время для адаптации. При этом подобная способность зафиксирована только у человека — аналогичный эксперимент с обезьяной привел ее в полную апатию, и только через неделю она начала понемногу реагировать на сильные раздражители, при этом оставаясь почти неподвижной.

В современной практике инвертоскоп используется для проведения различных экспериментов в области психологии. Иногда его применяют для космонавтов и моряков с целью тренировки вестибулярного аппарата и профилактики морской болезни.

От изображения к обработке данных

Девид Марр (David Marr) из Лаборатории искусственного интеллекта при Массачусетском Технологическом Институте первым попытался приблизиться к предмету с совершенно другой стороны в своей книге «Зрение» (Vision), изданной уже после его смерти. В ней он стремился рассмотреть основную проблему и предложить возможные пути ее решения. Результаты Марра конечно не окончательны и по сей день открыты для исследований с разных направлений, но тем не менее основным достоинством его книги является ее логичность и последовательность выводов. Во всяком случае, подход Марра дает очень полезную основу, на котором можно строить исследования невозможных объектов и двойственных фигур. На следующих страницах мы попытаемся проследить ход мыслей Марра.

Марр описал недостатки традиционной теории зрительного восприятия так:

«Попытки понять зрительное восприятие, изучая лишь нейроны, подобно попытке понять полет птицы, изучая лишь ее перья. Это просто невозможно. Чтобы понять полет птицы нам необходимо понять аэродинамику, и только потом структура перьев и различные формы птичьих крыльев будут иметь для нас какое-то значение&quot. В данном контексте Марр называет Дж. Дж. Гибсона (J. J. Gobson) первым, кто коснулся важных вопросов в данной области изучения зрения. По мнению Марра, самый важный вклад Гибсона состоял в том, что «самое важное в органах чувств то, что они являются информационными каналами из внешнего мира к нашему восприятию (…) Он поставил критически важный вопрос – Как каждый из нас получает одинаковые результаты при восприятии в повседневной жизни в постоянно изменяющихся условиях? Это очень важный вопрос, показывающий, что Гибсон правильно рассматривал проблему зрительного восприятия как восстановление из информации, полученной от сенсоров, «правильных» свойств объектов внешнего мира». И таким образом мы достигли области обработки информации.

Не должно возникать вопросов о том, что Марр хотел игнорировать другие объяснения феномена зрения. Напротив, он специально подчеркивает, что зрение не может быть удовлетворительно разъяснено только с одной точки зрения. Объяснения должны быть найдены для повседневных событий, согласующиеся с результатами экспериментальной психологии и всеми открытиями в данной области, сделанными психологами и неврологами в области анатомии нервной системы. Что касается обработки информации, то ученым компьютерных наук хотелось бы знать, как зрительная система может быть запрограммирована, какие алгоритмы наилучшим образом подходят для данной задачи. Короче, как зрение можно запрограммировать. Только всесторонняя теория может быть принята как удовлетворительное объяснение процесса видения.

Марр работал над данной проблемой с 1973 года по 1980 год. К сожалению, он не смог закончить свою работу, но он смог заложить прочный фундамент для дальнейших исследований.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями: